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AN INVARIANCE PRINCIPLE FOR DYNAMICAL SYSTEMS ON BANACH SPACE:

APPLICATION TO THE GENERAL PROBLEM OF THERMOELASTIC STABILITY

M. Slemrod and E. F. Infante

1. Introduction

Elastic stability is usually discussed from strictly mechanical con-

siderations. Recently, however, attempts have been made to analyze the

influence of the usually neglected thermodynamic properties of elastic

materials. More specifically, one may ask what effects the second law of

thermodynamics has on the asymptotic stability of equilibrium of thermo-

elastic materials.

KOITER [1] has studied the general nonlinear thermoelastic problem,

and for materials with internal friction he obtains asymptotic stability of

the equilibrium solutions. ERICKSEN [2] has posed the question as to the

asymptotic stability of the equilibrium solutions of elastic materials with-

out imposing the assumption of internal friction. DAFERMOS [3] answered this

question to some degree by obtaining a description of the states that the

material approaches as t -ý •.

This same question is studied here in a more general setting than was

done by SLEMROD [4], but in the same spirit: it is shown that the results of

[3] can be obtained as a simple application of an invariance principle for

abstract dynamical systems [4,5].

2° Mathematical Preliminaries

The principal analytical tool to be used is a generalization due to

HALE [5] for abstract dynamical systems of the well known invariance

principle of LASALLE [6] for ordinary differential equations. The following



brief presentation of this tool emphasizes notation and concepts to be used

in studying the problem of thermoelastic stability.

Let R = [Ow) and let M be a Banach space with norm 11ý1 for

¢ G r . Then,

Definition 2.1. u is a dynamical system on a Banach space 9 if u
+

is a function u: R+ x• -ý such that u is continuous, u(O,O) = 0),

u(t+ ,0) 0 u(t,u(¶,4)) for all t,T ¶ 0 and all 4 in . The positive

orbit 0+(O) through 4 in • is defined as 0+(4) = U u(t,%). A point
tý;O

3 in • is an equilibrium point if 0+(i) =M

This set of definitions simply generalize familiar notions from the

theory of differential equations to dynamical systems.

Definition 2.2. A set M in •• is a positively invariant set of

the dynamical system u if for each 4 in M, 0+((V) C M.

Definition 2.3. A set M in • is an invariant set of the dynamical

system u if for each 4) in M there exists a function U(s,4)), U(0,2)= 4

defined and in M for s c (ioo) and such that u(t,U(s,¢)) = U(t+sO) for

all t c R

Definition 2.2 is well known. The second definition is used to extend

backward in time those solutions of the dynamical system which lie in an in-

variant set. It is clear that if a set M is invariant it is positively

invariant but the converse is, in general, false.
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Definition 2.4. If u is a dynamical system on _q and V is a

continuous scalar functional on q, define the functional

v3i) = 1 [V(u(t, )) -V
t

Then

Definition 2.5. V: • -.>R is said to be a Liapunov functional on a

set G in q if V is continuous on GU the closuxe of G, and if

V(¢) • 0 for ¢ in G. Furthermore, denote by S the set S=([ in

GIV(¢) = 0) and let M be the largest invariant set in S for the dynamical

system u. With these definitions it is then possible to prove:

Theorem 2.1 (HALE [5]). Let u be a dynamical system on •. If V

is a Liapunov functional on G and a positive orbit 0+(¢) belongs to G and

is in a compact set of _q then u(t, ) -- M as t -4c.

It is self-evident that in applications to the problem of asymptotic sta-

bility of an equilibrium point * it is necessary to show that M = [•r. More-

over., it should be emphasized that the usefulness of this theorem in applications

depends on the very relaxed assumptions imposed on the Liapunov functional V

and its derivative V. These conditions should be compared to the much stronger

conditions imposed by standard asymptotic stability theorems (see, for example,

PARKS [71).

3. Constitutive Equations of Linear Thermoelasticity

A material point is identified by x = (x1,x 2 2x) in its state of
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equilibrium (no stresses, constant temperature =o). The displacement field

at some time t following an initial disturbance at time t = 0 is given by

u(x.,t) and the temperature deviation by T(,t); p(x) denotes the density

at x, in the equilibrium state.

Let D be an open, bounded, connected set in E3 which is properly

regular [8]; let d denote the boundary of 2. The constitutive equations

of thermoelasticity are taken then in the form

Pi= (Ci kUk,), - (mijT),j (3.1)

Pc + m. iyro . - (K. .T0 j),i (5.2)

where body forces and heat sources have been excluded. In these equations

Cijk9 = C jik= C kij, mij = iji, Kij = Kji and CD P CiJk9 m i and

K are assumed to be smooth functions of x.

Let now t > 0. By a classical solution of the mixed initial-boundary
0

value problem in f x (Ot 0 ) we mean a pair (u,T) satisfying equations

(3.1) and (3.2) together with the boundary conditions

u = 0 on 6n x (O,to) (closed boundary), (5.5)

T = 0 on d2 X (Oto) (constant temperature); (3.4)

and with initial conditions

(uR(xyO),ia(2L0), T(ax,0)) =(u_(2), &(a.) , T_(:) 55-- 0 -o( ))

where u_(x), ýi_(X) and T_(x) are given functions on Q.

4. The Thermoelastic Problem as a Dynamical System

In this section we show, by recalling some results of DAFERMOS [3],

that the generalized solutions of the mixed initial boundary value problem

described above can be viewed on an appropriate Banach space as a dynamical



system (ZUBOV [9]). Once this is done, the application of Theorem 2.1 per-

mits us to draw immediate conclusions on the asymptotic behavior of the solu-

tions of our problem.

Consider the Sobolev spaces W(k)(S2 ) and W(k)(n), k = 1,2,...

(see, for instance SOBOLEV [10, 11], AGMON [12]). Assume that

ess inf p(x) > 0, ess inf CD(X() > 0, (4.1)

K. _i.j - C , C1 > 0 constant, (4.2)

(a reformulation of the Clausius-Duhem inequality; LANDAU and LIFSHITZ [13])

and for all v i W(1)(Q)20

fICij kii, jVkIdx - C2fSvi, vi,jdx, C2 > 0 constan( 4.- 3)

a general property of the tensor of the elastic modulii for infinitesimal elas-

ticity (TRUESDELL and NOLL [14]).

Define now the spaces H0 (n) Z W(1)( 2 ) X L2(n) X L2 (S() with norm
2 ýPCD2

(viwi:R) 2 0 fi j s .. _ R and _ H(D) = W~o)(l ) xfl f-1 o nto

WO)(9) x W•O)(n). Define the map P: Ho M d -+ Hl(a) sending (V. w.,R) E

H1o) onto (u v. T) c '&(' C H(O) where (uiT) e W0•)(1 ) w•0)(n) is

defined by the solution of the system

fýcij kUk u e. dx -f[ PWii + mijTei j]dx_

fnKij T. 0D , idx = f9 [PCDR + m ijYo V., j ]D dx.

for every D 2. O W•)(0). The mapping P is linear, well defined on Ho(Q)

and one to one. Hence, defining P P* let Hm(n) denote the range

of the map Pm . t is clear that p- exists and maps %n(Q) onto Ho(0)
mLet $I E Hm(•) and define II = 1 ~~lo Then,
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Lemma 4.1 (DAFERMOS [31). H is a Banach space with norm
m

Ho(0) D H(a) D ... D Hm(0) algebraically and topologically. Furthermore,

Hm(fý) is dense in H2 (f2) for m > I and the imbedding I: H (M) -+ H(0)

is compact.

Let us now define appropriately a generalized solution of our prob-

lem:

Definition 4.1. (u. i.iT) will be called a generalized solution

of (3.1) - (3.5) on S X (0,t ) if for all smooth test functions (v. R) with

compact support on ý2 and vanishing on n x 0.

t
f Of af((t-t )[pu.i i -C ijk uk. 4 i j + mj T- i. +

PCDSpD CD
+ - TR ÷ m. u. + p•i. + p - TR +

TO ~tf~ i a a... TO+m *

S~(4.4)

1 til + miji -R - -ofo(Ki,) 2 T dt dx~dt=

• . PCD
=-t of[ Pu%" vil t=O0 + -o:DT°0R t--O + mz.Ui~ju R t.o1dX-

With this definition it follows that:

Theorem 4.1 (DAFERMOS [31). Under assumptions (4.1) - (4.3) the

triple (ui . iT) describes a dynamical system on Hm(0), m = 0,1,2,...,

where (u. Gi. T) is the generalized solution to the equations of linear

thermoelasticity satisfying equation (4.4). Furthermore, for t in (O,t )

I(u' 4. T)(t)I2 + 1 tfoK T(m)T(M)dxd =

(4.5)
= I~u. o.. T )l2

where T(m)(x.,t) denotes the generalized mth derivative in time of T(x_,t).

5. Stability Analysis

The problem of thermoelastic stability has now been put in a setting

Li
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appropriate for the application of Theorem 2.1, which allows us to obtain

stability results in a simple and direct manner.

For this purpose, fix. m - 1. Then, by Theorem 4.1 and (4.5) it

follows that for any initial data in Hm(S() the trajectory (u. ai T)(t)

will lie in a bounded set of Hm(2) for any t > 0. Hence, by Lemma 4.1 the

trajectory remains in a compact set G of H9 (Q), 2 < m. But then all the hy-

pothesis of Theorem 2.1 are met with M = HI(92). For simplicity let I = 0

and V = (ui ui T)12o From (4.2) and (4.5) it immediately follows that

= - I---fAK..T .T Adx__ -c5_ITII., c > 0; therefore the set S is the set
02

S = -h.9 T) E H(0 IITIIL2 = 0). Let now be the largest positively

invariant set in S. By the definition of generalized solution (4.4) it
follows that M+ =.(u T) E Ho(Q) I JIT( , t)IIL2 0 for t t 0). Choosing

now vi 0 in (4.4) it follows that for (u. ia. T) c M+ it is necessary

that

f of d dxdt = -t f mijuo R dx0o 92 d(t-to0 ijui,9j _ '9

for every test function R. Choosing this function as R(x_,t) =

t-t
0

where i(x) is an arbitrary test function and ant) is the Co "bump"

function of Serrin [15], it follows that

famij(,a)ui J(x.,t)dx, = f.mij(x)Uoi.,j(x)dx,, t - 0

for (ui PiT) in M+. Hence, Theorem 2.1 applied to this context yields the

desired results

Theorem 5.1: For any initial data (u0 , o.,T) in Ha, nm -- 1, and
2. 1

under assumptions (4.1) - (4.3) (ui,taiT)(t) approaches asymptotically the set
(vi,÷iR) E: W(1) (0) X L (a) X L2 (92lIfmij (2) v, (j.x, t)ldx. = fm.jXU.(l5

0 -2 O, R IO (n 0 n o (X) LX.,

t 0, R = 0) in the norm of the spaceW XL(n x L2 ( 92).
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